Multiclass classifiers based on dimension reduction with generalized LDA

نویسندگان

  • Hyunsoo Kim
  • Barry L. Drake
  • Haesun Park
چکیده

Linear discriminant analysis (LDA) has been widely used for dimension reduction of data sets with multiple classes. The LDA has been recently extended to various generalized LDA methods which are applicable regardless of the relative sizes between the data dimension and the number of data items. In this paper, we propose several multiclass classifiers based on generalized LDA algorithms, taking advantage of the dimension reducing transformation matrix without requiring additional training or any parameter optimization. A marginal linear discriminant classifier, a Bayesian linear discriminant classifier, and a onedimensional Bayesian linear discriminant classifier are introduced for multiclass classification. Our experimental results illustrate that these classifiers produce higher ten-fold cross validation accuracy than kNN and centroid based classification in the reduced dimensional space providing efficient general multiclass classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships Between Support Vector Classifiers and Generalized Linear Discriminant Analysis on Support Vectors

The linear discriminant analysis based on the generalized singular value decomposition (LDA/GSVD) has recently been introduced to circumvents the nonsingularity restriction that occur in the classical LDA so that a dimension reducing transformation can be effectively obtained for undersampled problems. In this paper, relationships between support vector machines (SVMs) and the generalized linea...

متن کامل

A comparison of generalized linear discriminant analysis algorithms

Linear Discriminant Analysis (LDA) is a dimension reduction method which finds an optimal linear transformation that maximizes the class separability. However, in undersampled problems where the number of data samples is smaller than the dimension of data space, it is difficult to apply the LDA due to the singularity of scatter matrices caused by high dimensionality. In order to make the LDA ap...

متن کامل

Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria

ÐWe derive a class of computationally inexpensive linear dimension reduction criteria by introducing a weighted variant of the well-known K-class Fisher criterion associated with linear discriminant analysis (LDA). It can be seen that LDA weights contributions of individual class pairs according to the Euclidian distance of the respective class means. We generalize upon LDA by introducing a dif...

متن کامل

Kernel Discriminant Analysis based on Generalized Singular Value Decomposition

In Linear Discriminant Analysis (LDA), a dimension reducing linear transformation is found in order to better distinguish clusters from each other in the reduced dimensional space. However, LDA has a limitation that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. We propose a nonlinear discriminant analysis based on kerne...

متن کامل

Nonlinear Discriminant Analysis Using Kernel Functions and the Generalized Singular Value Decomposition

Linear Discriminant Analysis (LDA) has been widely used for linear dimension reduction. However, LDA has some limitations that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. In order to overcome the problems caused by the singularity of the scatter matrices, a generalization of LDA based on the generalized singular value...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007